vendor: add uncommitted files from previous change

s3-about
Nick Craig-Wood 2020-01-11 17:56:14 +00:00
parent 92662baceb
commit e0d41da3e3
11 changed files with 1518 additions and 0 deletions

17
vendor/golang.org/x/crypto/chacha20/chacha_arm64.go generated vendored Normal file
View File

@ -0,0 +1,17 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11
// +build !gccgo,!appengine
package chacha20
const bufSize = 256
//go:noescape
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
func (c *Cipher) xorKeyStreamBlocks(dst, src []byte) {
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter)
}

308
vendor/golang.org/x/crypto/chacha20/chacha_arm64.s generated vendored Normal file
View File

@ -0,0 +1,308 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.11
// +build !gccgo,!appengine
#include "textflag.h"
#define NUM_ROUNDS 10
// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
MOVD dst+0(FP), R1
MOVD src+24(FP), R2
MOVD src_len+32(FP), R3
MOVD key+48(FP), R4
MOVD nonce+56(FP), R6
MOVD counter+64(FP), R7
MOVD $·constants(SB), R10
MOVD $·incRotMatrix(SB), R11
MOVW (R7), R20
AND $~255, R3, R13
ADD R2, R13, R12 // R12 for block end
AND $255, R3, R13
loop:
MOVD $NUM_ROUNDS, R21
VLD1 (R11), [V30.S4, V31.S4]
// load contants
// VLD4R (R10), [V0.S4, V1.S4, V2.S4, V3.S4]
WORD $0x4D60E940
// load keys
// VLD4R 16(R4), [V4.S4, V5.S4, V6.S4, V7.S4]
WORD $0x4DFFE884
// VLD4R 16(R4), [V8.S4, V9.S4, V10.S4, V11.S4]
WORD $0x4DFFE888
SUB $32, R4
// load counter + nonce
// VLD1R (R7), [V12.S4]
WORD $0x4D40C8EC
// VLD3R (R6), [V13.S4, V14.S4, V15.S4]
WORD $0x4D40E8CD
// update counter
VADD V30.S4, V12.S4, V12.S4
chacha:
// V0..V3 += V4..V7
// V12..V15 <<<= ((V12..V15 XOR V0..V3), 16)
VADD V0.S4, V4.S4, V0.S4
VADD V1.S4, V5.S4, V1.S4
VADD V2.S4, V6.S4, V2.S4
VADD V3.S4, V7.S4, V3.S4
VEOR V12.B16, V0.B16, V12.B16
VEOR V13.B16, V1.B16, V13.B16
VEOR V14.B16, V2.B16, V14.B16
VEOR V15.B16, V3.B16, V15.B16
VREV32 V12.H8, V12.H8
VREV32 V13.H8, V13.H8
VREV32 V14.H8, V14.H8
VREV32 V15.H8, V15.H8
// V8..V11 += V12..V15
// V4..V7 <<<= ((V4..V7 XOR V8..V11), 12)
VADD V8.S4, V12.S4, V8.S4
VADD V9.S4, V13.S4, V9.S4
VADD V10.S4, V14.S4, V10.S4
VADD V11.S4, V15.S4, V11.S4
VEOR V8.B16, V4.B16, V16.B16
VEOR V9.B16, V5.B16, V17.B16
VEOR V10.B16, V6.B16, V18.B16
VEOR V11.B16, V7.B16, V19.B16
VSHL $12, V16.S4, V4.S4
VSHL $12, V17.S4, V5.S4
VSHL $12, V18.S4, V6.S4
VSHL $12, V19.S4, V7.S4
VSRI $20, V16.S4, V4.S4
VSRI $20, V17.S4, V5.S4
VSRI $20, V18.S4, V6.S4
VSRI $20, V19.S4, V7.S4
// V0..V3 += V4..V7
// V12..V15 <<<= ((V12..V15 XOR V0..V3), 8)
VADD V0.S4, V4.S4, V0.S4
VADD V1.S4, V5.S4, V1.S4
VADD V2.S4, V6.S4, V2.S4
VADD V3.S4, V7.S4, V3.S4
VEOR V12.B16, V0.B16, V12.B16
VEOR V13.B16, V1.B16, V13.B16
VEOR V14.B16, V2.B16, V14.B16
VEOR V15.B16, V3.B16, V15.B16
VTBL V31.B16, [V12.B16], V12.B16
VTBL V31.B16, [V13.B16], V13.B16
VTBL V31.B16, [V14.B16], V14.B16
VTBL V31.B16, [V15.B16], V15.B16
// V8..V11 += V12..V15
// V4..V7 <<<= ((V4..V7 XOR V8..V11), 7)
VADD V12.S4, V8.S4, V8.S4
VADD V13.S4, V9.S4, V9.S4
VADD V14.S4, V10.S4, V10.S4
VADD V15.S4, V11.S4, V11.S4
VEOR V8.B16, V4.B16, V16.B16
VEOR V9.B16, V5.B16, V17.B16
VEOR V10.B16, V6.B16, V18.B16
VEOR V11.B16, V7.B16, V19.B16
VSHL $7, V16.S4, V4.S4
VSHL $7, V17.S4, V5.S4
VSHL $7, V18.S4, V6.S4
VSHL $7, V19.S4, V7.S4
VSRI $25, V16.S4, V4.S4
VSRI $25, V17.S4, V5.S4
VSRI $25, V18.S4, V6.S4
VSRI $25, V19.S4, V7.S4
// V0..V3 += V5..V7, V4
// V15,V12-V14 <<<= ((V15,V12-V14 XOR V0..V3), 16)
VADD V0.S4, V5.S4, V0.S4
VADD V1.S4, V6.S4, V1.S4
VADD V2.S4, V7.S4, V2.S4
VADD V3.S4, V4.S4, V3.S4
VEOR V15.B16, V0.B16, V15.B16
VEOR V12.B16, V1.B16, V12.B16
VEOR V13.B16, V2.B16, V13.B16
VEOR V14.B16, V3.B16, V14.B16
VREV32 V12.H8, V12.H8
VREV32 V13.H8, V13.H8
VREV32 V14.H8, V14.H8
VREV32 V15.H8, V15.H8
// V10 += V15; V5 <<<= ((V10 XOR V5), 12)
// ...
VADD V15.S4, V10.S4, V10.S4
VADD V12.S4, V11.S4, V11.S4
VADD V13.S4, V8.S4, V8.S4
VADD V14.S4, V9.S4, V9.S4
VEOR V10.B16, V5.B16, V16.B16
VEOR V11.B16, V6.B16, V17.B16
VEOR V8.B16, V7.B16, V18.B16
VEOR V9.B16, V4.B16, V19.B16
VSHL $12, V16.S4, V5.S4
VSHL $12, V17.S4, V6.S4
VSHL $12, V18.S4, V7.S4
VSHL $12, V19.S4, V4.S4
VSRI $20, V16.S4, V5.S4
VSRI $20, V17.S4, V6.S4
VSRI $20, V18.S4, V7.S4
VSRI $20, V19.S4, V4.S4
// V0 += V5; V15 <<<= ((V0 XOR V15), 8)
// ...
VADD V5.S4, V0.S4, V0.S4
VADD V6.S4, V1.S4, V1.S4
VADD V7.S4, V2.S4, V2.S4
VADD V4.S4, V3.S4, V3.S4
VEOR V0.B16, V15.B16, V15.B16
VEOR V1.B16, V12.B16, V12.B16
VEOR V2.B16, V13.B16, V13.B16
VEOR V3.B16, V14.B16, V14.B16
VTBL V31.B16, [V12.B16], V12.B16
VTBL V31.B16, [V13.B16], V13.B16
VTBL V31.B16, [V14.B16], V14.B16
VTBL V31.B16, [V15.B16], V15.B16
// V10 += V15; V5 <<<= ((V10 XOR V5), 7)
// ...
VADD V15.S4, V10.S4, V10.S4
VADD V12.S4, V11.S4, V11.S4
VADD V13.S4, V8.S4, V8.S4
VADD V14.S4, V9.S4, V9.S4
VEOR V10.B16, V5.B16, V16.B16
VEOR V11.B16, V6.B16, V17.B16
VEOR V8.B16, V7.B16, V18.B16
VEOR V9.B16, V4.B16, V19.B16
VSHL $7, V16.S4, V5.S4
VSHL $7, V17.S4, V6.S4
VSHL $7, V18.S4, V7.S4
VSHL $7, V19.S4, V4.S4
VSRI $25, V16.S4, V5.S4
VSRI $25, V17.S4, V6.S4
VSRI $25, V18.S4, V7.S4
VSRI $25, V19.S4, V4.S4
SUB $1, R21
CBNZ R21, chacha
// VLD4R (R10), [V16.S4, V17.S4, V18.S4, V19.S4]
WORD $0x4D60E950
// VLD4R 16(R4), [V20.S4, V21.S4, V22.S4, V23.S4]
WORD $0x4DFFE894
VADD V30.S4, V12.S4, V12.S4
VADD V16.S4, V0.S4, V0.S4
VADD V17.S4, V1.S4, V1.S4
VADD V18.S4, V2.S4, V2.S4
VADD V19.S4, V3.S4, V3.S4
// VLD4R 16(R4), [V24.S4, V25.S4, V26.S4, V27.S4]
WORD $0x4DFFE898
// restore R4
SUB $32, R4
// load counter + nonce
// VLD1R (R7), [V28.S4]
WORD $0x4D40C8FC
// VLD3R (R6), [V29.S4, V30.S4, V31.S4]
WORD $0x4D40E8DD
VADD V20.S4, V4.S4, V4.S4
VADD V21.S4, V5.S4, V5.S4
VADD V22.S4, V6.S4, V6.S4
VADD V23.S4, V7.S4, V7.S4
VADD V24.S4, V8.S4, V8.S4
VADD V25.S4, V9.S4, V9.S4
VADD V26.S4, V10.S4, V10.S4
VADD V27.S4, V11.S4, V11.S4
VADD V28.S4, V12.S4, V12.S4
VADD V29.S4, V13.S4, V13.S4
VADD V30.S4, V14.S4, V14.S4
VADD V31.S4, V15.S4, V15.S4
VZIP1 V1.S4, V0.S4, V16.S4
VZIP2 V1.S4, V0.S4, V17.S4
VZIP1 V3.S4, V2.S4, V18.S4
VZIP2 V3.S4, V2.S4, V19.S4
VZIP1 V5.S4, V4.S4, V20.S4
VZIP2 V5.S4, V4.S4, V21.S4
VZIP1 V7.S4, V6.S4, V22.S4
VZIP2 V7.S4, V6.S4, V23.S4
VZIP1 V9.S4, V8.S4, V24.S4
VZIP2 V9.S4, V8.S4, V25.S4
VZIP1 V11.S4, V10.S4, V26.S4
VZIP2 V11.S4, V10.S4, V27.S4
VZIP1 V13.S4, V12.S4, V28.S4
VZIP2 V13.S4, V12.S4, V29.S4
VZIP1 V15.S4, V14.S4, V30.S4
VZIP2 V15.S4, V14.S4, V31.S4
VZIP1 V18.D2, V16.D2, V0.D2
VZIP2 V18.D2, V16.D2, V4.D2
VZIP1 V19.D2, V17.D2, V8.D2
VZIP2 V19.D2, V17.D2, V12.D2
VLD1.P 64(R2), [V16.B16, V17.B16, V18.B16, V19.B16]
VZIP1 V22.D2, V20.D2, V1.D2
VZIP2 V22.D2, V20.D2, V5.D2
VZIP1 V23.D2, V21.D2, V9.D2
VZIP2 V23.D2, V21.D2, V13.D2
VLD1.P 64(R2), [V20.B16, V21.B16, V22.B16, V23.B16]
VZIP1 V26.D2, V24.D2, V2.D2
VZIP2 V26.D2, V24.D2, V6.D2
VZIP1 V27.D2, V25.D2, V10.D2
VZIP2 V27.D2, V25.D2, V14.D2
VLD1.P 64(R2), [V24.B16, V25.B16, V26.B16, V27.B16]
VZIP1 V30.D2, V28.D2, V3.D2
VZIP2 V30.D2, V28.D2, V7.D2
VZIP1 V31.D2, V29.D2, V11.D2
VZIP2 V31.D2, V29.D2, V15.D2
VLD1.P 64(R2), [V28.B16, V29.B16, V30.B16, V31.B16]
VEOR V0.B16, V16.B16, V16.B16
VEOR V1.B16, V17.B16, V17.B16
VEOR V2.B16, V18.B16, V18.B16
VEOR V3.B16, V19.B16, V19.B16
VST1.P [V16.B16, V17.B16, V18.B16, V19.B16], 64(R1)
VEOR V4.B16, V20.B16, V20.B16
VEOR V5.B16, V21.B16, V21.B16
VEOR V6.B16, V22.B16, V22.B16
VEOR V7.B16, V23.B16, V23.B16
VST1.P [V20.B16, V21.B16, V22.B16, V23.B16], 64(R1)
VEOR V8.B16, V24.B16, V24.B16
VEOR V9.B16, V25.B16, V25.B16
VEOR V10.B16, V26.B16, V26.B16
VEOR V11.B16, V27.B16, V27.B16
VST1.P [V24.B16, V25.B16, V26.B16, V27.B16], 64(R1)
VEOR V12.B16, V28.B16, V28.B16
VEOR V13.B16, V29.B16, V29.B16
VEOR V14.B16, V30.B16, V30.B16
VEOR V15.B16, V31.B16, V31.B16
VST1.P [V28.B16, V29.B16, V30.B16, V31.B16], 64(R1)
ADD $4, R20
MOVW R20, (R7) // update counter
CMP R2, R12
BGT loop
RET
DATA ·constants+0x00(SB)/4, $0x61707865
DATA ·constants+0x04(SB)/4, $0x3320646e
DATA ·constants+0x08(SB)/4, $0x79622d32
DATA ·constants+0x0c(SB)/4, $0x6b206574
GLOBL ·constants(SB), NOPTR|RODATA, $32
DATA ·incRotMatrix+0x00(SB)/4, $0x00000000
DATA ·incRotMatrix+0x04(SB)/4, $0x00000001
DATA ·incRotMatrix+0x08(SB)/4, $0x00000002
DATA ·incRotMatrix+0x0c(SB)/4, $0x00000003
DATA ·incRotMatrix+0x10(SB)/4, $0x02010003
DATA ·incRotMatrix+0x14(SB)/4, $0x06050407
DATA ·incRotMatrix+0x18(SB)/4, $0x0A09080B
DATA ·incRotMatrix+0x1c(SB)/4, $0x0E0D0C0F
GLOBL ·incRotMatrix(SB), NOPTR|RODATA, $32

364
vendor/golang.org/x/crypto/chacha20/chacha_generic.go generated vendored Normal file
View File

@ -0,0 +1,364 @@
// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package chacha20 implements the ChaCha20 and XChaCha20 encryption algorithms
// as specified in RFC 8439 and draft-irtf-cfrg-xchacha-01.
package chacha20
import (
"crypto/cipher"
"encoding/binary"
"errors"
"math/bits"
"golang.org/x/crypto/internal/subtle"
)
const (
// KeySize is the size of the key used by this cipher, in bytes.
KeySize = 32
// NonceSize is the size of the nonce used with the standard variant of this
// cipher, in bytes.
//
// Note that this is too short to be safely generated at random if the same
// key is reused more than 2³² times.
NonceSize = 12
// NonceSizeX is the size of the nonce used with the XChaCha20 variant of
// this cipher, in bytes.
NonceSizeX = 24
)
// Cipher is a stateful instance of ChaCha20 or XChaCha20 using a particular key
// and nonce. A *Cipher implements the cipher.Stream interface.
type Cipher struct {
// The ChaCha20 state is 16 words: 4 constant, 8 of key, 1 of counter
// (incremented after each block), and 3 of nonce.
key [8]uint32
counter uint32
nonce [3]uint32
// The last len bytes of buf are leftover key stream bytes from the previous
// XORKeyStream invocation. The size of buf depends on how many blocks are
// computed at a time.
buf [bufSize]byte
len int
// The counter-independent results of the first round are cached after they
// are computed the first time.
precompDone bool
p1, p5, p9, p13 uint32
p2, p6, p10, p14 uint32
p3, p7, p11, p15 uint32
}
var _ cipher.Stream = (*Cipher)(nil)
// NewUnauthenticatedCipher creates a new ChaCha20 stream cipher with the given
// 32 bytes key and a 12 or 24 bytes nonce. If a nonce of 24 bytes is provided,
// the XChaCha20 construction will be used. It returns an error if key or nonce
// have any other length.
//
// Note that ChaCha20, like all stream ciphers, is not authenticated and allows
// attackers to silently tamper with the plaintext. For this reason, it is more
// appropriate as a building block than as a standalone encryption mechanism.
// Instead, consider using package golang.org/x/crypto/chacha20poly1305.
func NewUnauthenticatedCipher(key, nonce []byte) (*Cipher, error) {
// This function is split into a wrapper so that the Cipher allocation will
// be inlined, and depending on how the caller uses the return value, won't
// escape to the heap.
c := &Cipher{}
return newUnauthenticatedCipher(c, key, nonce)
}
func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) {
if len(key) != KeySize {
return nil, errors.New("chacha20: wrong key size")
}
if len(nonce) == NonceSizeX {
// XChaCha20 uses the ChaCha20 core to mix 16 bytes of the nonce into a
// derived key, allowing it to operate on a nonce of 24 bytes. See
// draft-irtf-cfrg-xchacha-01, Section 2.3.
key, _ = HChaCha20(key, nonce[0:16])
cNonce := make([]byte, NonceSize)
copy(cNonce[4:12], nonce[16:24])
nonce = cNonce
} else if len(nonce) != NonceSize {
return nil, errors.New("chacha20: wrong nonce size")
}
c.key = [8]uint32{
binary.LittleEndian.Uint32(key[0:4]),
binary.LittleEndian.Uint32(key[4:8]),
binary.LittleEndian.Uint32(key[8:12]),
binary.LittleEndian.Uint32(key[12:16]),
binary.LittleEndian.Uint32(key[16:20]),
binary.LittleEndian.Uint32(key[20:24]),
binary.LittleEndian.Uint32(key[24:28]),
binary.LittleEndian.Uint32(key[28:32]),
}
c.nonce = [3]uint32{
binary.LittleEndian.Uint32(nonce[0:4]),
binary.LittleEndian.Uint32(nonce[4:8]),
binary.LittleEndian.Uint32(nonce[8:12]),
}
return c, nil
}
// The constant first 4 words of the ChaCha20 state.
const (
j0 uint32 = 0x61707865 // expa
j1 uint32 = 0x3320646e // nd 3
j2 uint32 = 0x79622d32 // 2-by
j3 uint32 = 0x6b206574 // te k
)
const blockSize = 64
// quarterRound is the core of ChaCha20. It shuffles the bits of 4 state words.
// It's executed 4 times for each of the 20 ChaCha20 rounds, operating on all 16
// words each round, in columnar or diagonal groups of 4 at a time.
func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) {
a += b
d ^= a
d = bits.RotateLeft32(d, 16)
c += d
b ^= c
b = bits.RotateLeft32(b, 12)
a += b
d ^= a
d = bits.RotateLeft32(d, 8)
c += d
b ^= c
b = bits.RotateLeft32(b, 7)
return a, b, c, d
}
// XORKeyStream XORs each byte in the given slice with a byte from the
// cipher's key stream. Dst and src must overlap entirely or not at all.
//
// If len(dst) < len(src), XORKeyStream will panic. It is acceptable
// to pass a dst bigger than src, and in that case, XORKeyStream will
// only update dst[:len(src)] and will not touch the rest of dst.
//
// Multiple calls to XORKeyStream behave as if the concatenation of
// the src buffers was passed in a single run. That is, Cipher
// maintains state and does not reset at each XORKeyStream call.
func (s *Cipher) XORKeyStream(dst, src []byte) {
if len(src) == 0 {
return
}
if len(dst) < len(src) {
panic("chacha20: output smaller than input")
}
dst = dst[:len(src)]
if subtle.InexactOverlap(dst, src) {
panic("chacha20: invalid buffer overlap")
}
// First, drain any remaining key stream from a previous XORKeyStream.
if s.len != 0 {
keyStream := s.buf[bufSize-s.len:]
if len(src) < len(keyStream) {
keyStream = keyStream[:len(src)]
}
_ = src[len(keyStream)-1] // bounds check elimination hint
for i, b := range keyStream {
dst[i] = src[i] ^ b
}
s.len -= len(keyStream)
src = src[len(keyStream):]
dst = dst[len(keyStream):]
}
const blocksPerBuf = bufSize / blockSize
numBufs := (uint64(len(src)) + bufSize - 1) / bufSize
if uint64(s.counter)+numBufs*blocksPerBuf >= 1<<32 {
panic("chacha20: counter overflow")
}
// xorKeyStreamBlocks implementations expect input lengths that are a
// multiple of bufSize. Platform-specific ones process multiple blocks at a
// time, so have bufSizes that are a multiple of blockSize.
rem := len(src) % bufSize
full := len(src) - rem
if full > 0 {
s.xorKeyStreamBlocks(dst[:full], src[:full])
}
// If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and
// keep the leftover keystream for the next XORKeyStream invocation.
if rem > 0 {
s.buf = [bufSize]byte{}
copy(s.buf[:], src[full:])
s.xorKeyStreamBlocks(s.buf[:], s.buf[:])
s.len = bufSize - copy(dst[full:], s.buf[:])
}
}
func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) {
if len(dst) != len(src) || len(dst)%blockSize != 0 {
panic("chacha20: internal error: wrong dst and/or src length")
}
// To generate each block of key stream, the initial cipher state
// (represented below) is passed through 20 rounds of shuffling,
// alternatively applying quarterRounds by columns (like 1, 5, 9, 13)
// or by diagonals (like 1, 6, 11, 12).
//
// 0:cccccccc 1:cccccccc 2:cccccccc 3:cccccccc
// 4:kkkkkkkk 5:kkkkkkkk 6:kkkkkkkk 7:kkkkkkkk
// 8:kkkkkkkk 9:kkkkkkkk 10:kkkkkkkk 11:kkkkkkkk
// 12:bbbbbbbb 13:nnnnnnnn 14:nnnnnnnn 15:nnnnnnnn
//
// c=constant k=key b=blockcount n=nonce
var (
c0, c1, c2, c3 = j0, j1, j2, j3
c4, c5, c6, c7 = s.key[0], s.key[1], s.key[2], s.key[3]
c8, c9, c10, c11 = s.key[4], s.key[5], s.key[6], s.key[7]
_, c13, c14, c15 = s.counter, s.nonce[0], s.nonce[1], s.nonce[2]
)
// Three quarters of the first round don't depend on the counter, so we can
// calculate them here, and reuse them for multiple blocks in the loop, and
// for future XORKeyStream invocations.
if !s.precompDone {
s.p1, s.p5, s.p9, s.p13 = quarterRound(c1, c5, c9, c13)
s.p2, s.p6, s.p10, s.p14 = quarterRound(c2, c6, c10, c14)
s.p3, s.p7, s.p11, s.p15 = quarterRound(c3, c7, c11, c15)
s.precompDone = true
}
for i := 0; i < len(src); i += blockSize {
// The remainder of the first column round.
fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter)
// The second diagonal round.
x0, x5, x10, x15 := quarterRound(fcr0, s.p5, s.p10, s.p15)
x1, x6, x11, x12 := quarterRound(s.p1, s.p6, s.p11, fcr12)
x2, x7, x8, x13 := quarterRound(s.p2, s.p7, fcr8, s.p13)
x3, x4, x9, x14 := quarterRound(s.p3, fcr4, s.p9, s.p14)
// The remaining 18 rounds.
for i := 0; i < 9; i++ {
// Column round.
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
// Diagonal round.
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
}
// Finally, add back the initial state to generate the key stream.
x0 += c0
x1 += c1
x2 += c2
x3 += c3
x4 += c4
x5 += c5
x6 += c6
x7 += c7
x8 += c8
x9 += c9
x10 += c10
x11 += c11
x12 += s.counter
x13 += c13
x14 += c14
x15 += c15
s.counter += 1
if s.counter == 0 {
panic("chacha20: internal error: counter overflow")
}
in, out := src[i:], dst[i:]
in, out = in[:blockSize], out[:blockSize] // bounds check elimination hint
// XOR the key stream with the source and write out the result.
xor(out[0:], in[0:], x0)
xor(out[4:], in[4:], x1)
xor(out[8:], in[8:], x2)
xor(out[12:], in[12:], x3)
xor(out[16:], in[16:], x4)
xor(out[20:], in[20:], x5)
xor(out[24:], in[24:], x6)
xor(out[28:], in[28:], x7)
xor(out[32:], in[32:], x8)
xor(out[36:], in[36:], x9)
xor(out[40:], in[40:], x10)
xor(out[44:], in[44:], x11)
xor(out[48:], in[48:], x12)
xor(out[52:], in[52:], x13)
xor(out[56:], in[56:], x14)
xor(out[60:], in[60:], x15)
}
}
// HChaCha20 uses the ChaCha20 core to generate a derived key from a 32 bytes
// key and a 16 bytes nonce. It returns an error if key or nonce have any other
// length. It is used as part of the XChaCha20 construction.
func HChaCha20(key, nonce []byte) ([]byte, error) {
// This function is split into a wrapper so that the slice allocation will
// be inlined, and depending on how the caller uses the return value, won't
// escape to the heap.
out := make([]byte, 32)
return hChaCha20(out, key, nonce)
}
func hChaCha20(out, key, nonce []byte) ([]byte, error) {
if len(key) != KeySize {
return nil, errors.New("chacha20: wrong HChaCha20 key size")
}
if len(nonce) != 16 {
return nil, errors.New("chacha20: wrong HChaCha20 nonce size")
}
x0, x1, x2, x3 := j0, j1, j2, j3
x4 := binary.LittleEndian.Uint32(key[0:4])
x5 := binary.LittleEndian.Uint32(key[4:8])
x6 := binary.LittleEndian.Uint32(key[8:12])
x7 := binary.LittleEndian.Uint32(key[12:16])
x8 := binary.LittleEndian.Uint32(key[16:20])
x9 := binary.LittleEndian.Uint32(key[20:24])
x10 := binary.LittleEndian.Uint32(key[24:28])
x11 := binary.LittleEndian.Uint32(key[28:32])
x12 := binary.LittleEndian.Uint32(nonce[0:4])
x13 := binary.LittleEndian.Uint32(nonce[4:8])
x14 := binary.LittleEndian.Uint32(nonce[8:12])
x15 := binary.LittleEndian.Uint32(nonce[12:16])
for i := 0; i < 10; i++ {
// Diagonal round.
x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12)
x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13)
x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14)
x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15)
// Column round.
x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15)
x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12)
x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13)
x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14)
}
_ = out[31] // bounds check elimination hint
binary.LittleEndian.PutUint32(out[0:4], x0)
binary.LittleEndian.PutUint32(out[4:8], x1)
binary.LittleEndian.PutUint32(out[8:12], x2)
binary.LittleEndian.PutUint32(out[12:16], x3)
binary.LittleEndian.PutUint32(out[16:20], x12)
binary.LittleEndian.PutUint32(out[20:24], x13)
binary.LittleEndian.PutUint32(out[24:28], x14)
binary.LittleEndian.PutUint32(out[28:32], x15)
return out, nil
}

13
vendor/golang.org/x/crypto/chacha20/chacha_noasm.go generated vendored Normal file
View File

@ -0,0 +1,13 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !arm64,!s390x,!ppc64le arm64,!go1.11 gccgo appengine
package chacha20
const bufSize = blockSize
func (s *Cipher) xorKeyStreamBlocks(dst, src []byte) {
s.xorKeyStreamBlocksGeneric(dst, src)
}

16
vendor/golang.org/x/crypto/chacha20/chacha_ppc64le.go generated vendored Normal file
View File

@ -0,0 +1,16 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo,!appengine
package chacha20
const bufSize = 256
//go:noescape
func chaCha20_ctr32_vsx(out, inp *byte, len int, key *[8]uint32, counter *uint32)
func (c *Cipher) xorKeyStreamBlocks(dst, src []byte) {
chaCha20_ctr32_vsx(&dst[0], &src[0], len(src), &c.key, &c.counter)
}

449
vendor/golang.org/x/crypto/chacha20/chacha_ppc64le.s generated vendored Normal file
View File

@ -0,0 +1,449 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Based on CRYPTOGAMS code with the following comment:
// # ====================================================================
// # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
// # project. The module is, however, dual licensed under OpenSSL and
// # CRYPTOGAMS licenses depending on where you obtain it. For further
// # details see http://www.openssl.org/~appro/cryptogams/.
// # ====================================================================
// Code for the perl script that generates the ppc64 assembler
// can be found in the cryptogams repository at the link below. It is based on
// the original from openssl.
// https://github.com/dot-asm/cryptogams/commit/a60f5b50ed908e91
// The differences in this and the original implementation are
// due to the calling conventions and initialization of constants.
// +build !gccgo,!appengine
#include "textflag.h"
#define OUT R3
#define INP R4
#define LEN R5
#define KEY R6
#define CNT R7
#define TMP R15
#define CONSTBASE R16
#define BLOCKS R17
DATA consts<>+0x00(SB)/8, $0x3320646e61707865
DATA consts<>+0x08(SB)/8, $0x6b20657479622d32
DATA consts<>+0x10(SB)/8, $0x0000000000000001
DATA consts<>+0x18(SB)/8, $0x0000000000000000
DATA consts<>+0x20(SB)/8, $0x0000000000000004
DATA consts<>+0x28(SB)/8, $0x0000000000000000
DATA consts<>+0x30(SB)/8, $0x0a0b08090e0f0c0d
DATA consts<>+0x38(SB)/8, $0x0203000106070405
DATA consts<>+0x40(SB)/8, $0x090a0b080d0e0f0c
DATA consts<>+0x48(SB)/8, $0x0102030005060704
DATA consts<>+0x50(SB)/8, $0x6170786561707865
DATA consts<>+0x58(SB)/8, $0x6170786561707865
DATA consts<>+0x60(SB)/8, $0x3320646e3320646e
DATA consts<>+0x68(SB)/8, $0x3320646e3320646e
DATA consts<>+0x70(SB)/8, $0x79622d3279622d32
DATA consts<>+0x78(SB)/8, $0x79622d3279622d32
DATA consts<>+0x80(SB)/8, $0x6b2065746b206574
DATA consts<>+0x88(SB)/8, $0x6b2065746b206574
DATA consts<>+0x90(SB)/8, $0x0000000100000000
DATA consts<>+0x98(SB)/8, $0x0000000300000002
GLOBL consts<>(SB), RODATA, $0xa0
//func chaCha20_ctr32_vsx(out, inp *byte, len int, key *[8]uint32, counter *uint32)
TEXT ·chaCha20_ctr32_vsx(SB),NOSPLIT,$64-40
MOVD out+0(FP), OUT
MOVD inp+8(FP), INP
MOVD len+16(FP), LEN
MOVD key+24(FP), KEY
MOVD counter+32(FP), CNT
// Addressing for constants
MOVD $consts<>+0x00(SB), CONSTBASE
MOVD $16, R8
MOVD $32, R9
MOVD $48, R10
MOVD $64, R11
SRD $6, LEN, BLOCKS
// V16
LXVW4X (CONSTBASE)(R0), VS48
ADD $80,CONSTBASE
// Load key into V17,V18
LXVW4X (KEY)(R0), VS49
LXVW4X (KEY)(R8), VS50
// Load CNT, NONCE into V19
LXVW4X (CNT)(R0), VS51
// Clear V27
VXOR V27, V27, V27
// V28
LXVW4X (CONSTBASE)(R11), VS60
// splat slot from V19 -> V26
VSPLTW $0, V19, V26
VSLDOI $4, V19, V27, V19
VSLDOI $12, V27, V19, V19
VADDUWM V26, V28, V26
MOVD $10, R14
MOVD R14, CTR
loop_outer_vsx:
// V0, V1, V2, V3
LXVW4X (R0)(CONSTBASE), VS32
LXVW4X (R8)(CONSTBASE), VS33
LXVW4X (R9)(CONSTBASE), VS34
LXVW4X (R10)(CONSTBASE), VS35
// splat values from V17, V18 into V4-V11
VSPLTW $0, V17, V4
VSPLTW $1, V17, V5
VSPLTW $2, V17, V6
VSPLTW $3, V17, V7
VSPLTW $0, V18, V8
VSPLTW $1, V18, V9
VSPLTW $2, V18, V10
VSPLTW $3, V18, V11
// VOR
VOR V26, V26, V12
// splat values from V19 -> V13, V14, V15
VSPLTW $1, V19, V13
VSPLTW $2, V19, V14
VSPLTW $3, V19, V15
// splat const values
VSPLTISW $-16, V27
VSPLTISW $12, V28
VSPLTISW $8, V29
VSPLTISW $7, V30
loop_vsx:
VADDUWM V0, V4, V0
VADDUWM V1, V5, V1
VADDUWM V2, V6, V2
VADDUWM V3, V7, V3
VXOR V12, V0, V12
VXOR V13, V1, V13
VXOR V14, V2, V14
VXOR V15, V3, V15
VRLW V12, V27, V12
VRLW V13, V27, V13
VRLW V14, V27, V14
VRLW V15, V27, V15
VADDUWM V8, V12, V8
VADDUWM V9, V13, V9
VADDUWM V10, V14, V10
VADDUWM V11, V15, V11
VXOR V4, V8, V4
VXOR V5, V9, V5
VXOR V6, V10, V6
VXOR V7, V11, V7
VRLW V4, V28, V4
VRLW V5, V28, V5
VRLW V6, V28, V6
VRLW V7, V28, V7
VADDUWM V0, V4, V0
VADDUWM V1, V5, V1
VADDUWM V2, V6, V2
VADDUWM V3, V7, V3
VXOR V12, V0, V12
VXOR V13, V1, V13
VXOR V14, V2, V14
VXOR V15, V3, V15
VRLW V12, V29, V12
VRLW V13, V29, V13
VRLW V14, V29, V14
VRLW V15, V29, V15
VADDUWM V8, V12, V8
VADDUWM V9, V13, V9
VADDUWM V10, V14, V10
VADDUWM V11, V15, V11
VXOR V4, V8, V4
VXOR V5, V9, V5
VXOR V6, V10, V6
VXOR V7, V11, V7
VRLW V4, V30, V4
VRLW V5, V30, V5
VRLW V6, V30, V6
VRLW V7, V30, V7
VADDUWM V0, V5, V0
VADDUWM V1, V6, V1
VADDUWM V2, V7, V2
VADDUWM V3, V4, V3
VXOR V15, V0, V15
VXOR V12, V1, V12
VXOR V13, V2, V13
VXOR V14, V3, V14
VRLW V15, V27, V15
VRLW V12, V27, V12
VRLW V13, V27, V13
VRLW V14, V27, V14
VADDUWM V10, V15, V10
VADDUWM V11, V12, V11
VADDUWM V8, V13, V8
VADDUWM V9, V14, V9
VXOR V5, V10, V5
VXOR V6, V11, V6
VXOR V7, V8, V7
VXOR V4, V9, V4
VRLW V5, V28, V5
VRLW V6, V28, V6
VRLW V7, V28, V7
VRLW V4, V28, V4
VADDUWM V0, V5, V0
VADDUWM V1, V6, V1
VADDUWM V2, V7, V2
VADDUWM V3, V4, V3
VXOR V15, V0, V15
VXOR V12, V1, V12
VXOR V13, V2, V13
VXOR V14, V3, V14
VRLW V15, V29, V15
VRLW V12, V29, V12
VRLW V13, V29, V13
VRLW V14, V29, V14
VADDUWM V10, V15, V10
VADDUWM V11, V12, V11
VADDUWM V8, V13, V8
VADDUWM V9, V14, V9
VXOR V5, V10, V5
VXOR V6, V11, V6
VXOR V7, V8, V7
VXOR V4, V9, V4
VRLW V5, V30, V5
VRLW V6, V30, V6
VRLW V7, V30, V7
VRLW V4, V30, V4
BC 16, LT, loop_vsx
VADDUWM V12, V26, V12
WORD $0x13600F8C // VMRGEW V0, V1, V27
WORD $0x13821F8C // VMRGEW V2, V3, V28
WORD $0x10000E8C // VMRGOW V0, V1, V0
WORD $0x10421E8C // VMRGOW V2, V3, V2
WORD $0x13A42F8C // VMRGEW V4, V5, V29
WORD $0x13C63F8C // VMRGEW V6, V7, V30
XXPERMDI VS32, VS34, $0, VS33
XXPERMDI VS32, VS34, $3, VS35
XXPERMDI VS59, VS60, $0, VS32
XXPERMDI VS59, VS60, $3, VS34
WORD $0x10842E8C // VMRGOW V4, V5, V4
WORD $0x10C63E8C // VMRGOW V6, V7, V6
WORD $0x13684F8C // VMRGEW V8, V9, V27
WORD $0x138A5F8C // VMRGEW V10, V11, V28
XXPERMDI VS36, VS38, $0, VS37
XXPERMDI VS36, VS38, $3, VS39
XXPERMDI VS61, VS62, $0, VS36
XXPERMDI VS61, VS62, $3, VS38
WORD $0x11084E8C // VMRGOW V8, V9, V8
WORD $0x114A5E8C // VMRGOW V10, V11, V10
WORD $0x13AC6F8C // VMRGEW V12, V13, V29
WORD $0x13CE7F8C // VMRGEW V14, V15, V30
XXPERMDI VS40, VS42, $0, VS41
XXPERMDI VS40, VS42, $3, VS43
XXPERMDI VS59, VS60, $0, VS40
XXPERMDI VS59, VS60, $3, VS42
WORD $0x118C6E8C // VMRGOW V12, V13, V12
WORD $0x11CE7E8C // VMRGOW V14, V15, V14
VSPLTISW $4, V27
VADDUWM V26, V27, V26
XXPERMDI VS44, VS46, $0, VS45
XXPERMDI VS44, VS46, $3, VS47
XXPERMDI VS61, VS62, $0, VS44
XXPERMDI VS61, VS62, $3, VS46
VADDUWM V0, V16, V0
VADDUWM V4, V17, V4
VADDUWM V8, V18, V8
VADDUWM V12, V19, V12
CMPU LEN, $64
BLT tail_vsx
// Bottom of loop
LXVW4X (INP)(R0), VS59
LXVW4X (INP)(R8), VS60
LXVW4X (INP)(R9), VS61
LXVW4X (INP)(R10), VS62
VXOR V27, V0, V27
VXOR V28, V4, V28
VXOR V29, V8, V29
VXOR V30, V12, V30
STXVW4X VS59, (OUT)(R0)
STXVW4X VS60, (OUT)(R8)
ADD $64, INP
STXVW4X VS61, (OUT)(R9)
ADD $-64, LEN
STXVW4X VS62, (OUT)(R10)
ADD $64, OUT
BEQ done_vsx
VADDUWM V1, V16, V0
VADDUWM V5, V17, V4
VADDUWM V9, V18, V8
VADDUWM V13, V19, V12
CMPU LEN, $64
BLT tail_vsx
LXVW4X (INP)(R0), VS59
LXVW4X (INP)(R8), VS60
LXVW4X (INP)(R9), VS61
LXVW4X (INP)(R10), VS62
VXOR V27, V0, V27
VXOR V28, V4, V28
VXOR V29, V8, V29
VXOR V30, V12, V30
STXVW4X VS59, (OUT)(R0)
STXVW4X VS60, (OUT)(R8)
ADD $64, INP
STXVW4X VS61, (OUT)(R9)
ADD $-64, LEN
STXVW4X VS62, (OUT)(V10)
ADD $64, OUT
BEQ done_vsx
VADDUWM V2, V16, V0
VADDUWM V6, V17, V4
VADDUWM V10, V18, V8
VADDUWM V14, V19, V12
CMPU LEN, $64
BLT tail_vsx
LXVW4X (INP)(R0), VS59
LXVW4X (INP)(R8), VS60
LXVW4X (INP)(R9), VS61
LXVW4X (INP)(R10), VS62
VXOR V27, V0, V27
VXOR V28, V4, V28
VXOR V29, V8, V29
VXOR V30, V12, V30
STXVW4X VS59, (OUT)(R0)
STXVW4X VS60, (OUT)(R8)
ADD $64, INP
STXVW4X VS61, (OUT)(R9)
ADD $-64, LEN
STXVW4X VS62, (OUT)(R10)
ADD $64, OUT
BEQ done_vsx
VADDUWM V3, V16, V0
VADDUWM V7, V17, V4
VADDUWM V11, V18, V8
VADDUWM V15, V19, V12
CMPU LEN, $64
BLT tail_vsx
LXVW4X (INP)(R0), VS59
LXVW4X (INP)(R8), VS60
LXVW4X (INP)(R9), VS61
LXVW4X (INP)(R10), VS62
VXOR V27, V0, V27
VXOR V28, V4, V28
VXOR V29, V8, V29
VXOR V30, V12, V30
STXVW4X VS59, (OUT)(R0)
STXVW4X VS60, (OUT)(R8)
ADD $64, INP
STXVW4X VS61, (OUT)(R9)
ADD $-64, LEN
STXVW4X VS62, (OUT)(R10)
ADD $64, OUT
MOVD $10, R14
MOVD R14, CTR
BNE loop_outer_vsx
done_vsx:
// Increment counter by number of 64 byte blocks
MOVD (CNT), R14
ADD BLOCKS, R14
MOVD R14, (CNT)
RET
tail_vsx:
ADD $32, R1, R11
MOVD LEN, CTR
// Save values on stack to copy from
STXVW4X VS32, (R11)(R0)
STXVW4X VS36, (R11)(R8)
STXVW4X VS40, (R11)(R9)
STXVW4X VS44, (R11)(R10)
ADD $-1, R11, R12
ADD $-1, INP
ADD $-1, OUT
looptail_vsx:
// Copying the result to OUT
// in bytes.
MOVBZU 1(R12), KEY
MOVBZU 1(INP), TMP
XOR KEY, TMP, KEY
MOVBU KEY, 1(OUT)
BC 16, LT, looptail_vsx
// Clear the stack values
STXVW4X VS48, (R11)(R0)
STXVW4X VS48, (R11)(R8)
STXVW4X VS48, (R11)(R9)
STXVW4X VS48, (R11)(R10)
BR done_vsx

26
vendor/golang.org/x/crypto/chacha20/chacha_s390x.go generated vendored Normal file
View File

@ -0,0 +1,26 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo,!appengine
package chacha20
import "golang.org/x/sys/cpu"
var haveAsm = cpu.S390X.HasVX
const bufSize = 256
// xorKeyStreamVX is an assembly implementation of XORKeyStream. It must only
// be called when the vector facility is available. Implementation in asm_s390x.s.
//go:noescape
func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
func (c *Cipher) xorKeyStreamBlocks(dst, src []byte) {
if cpu.S390X.HasVX {
xorKeyStreamVX(dst, src, &c.key, &c.nonce, &c.counter)
} else {
c.xorKeyStreamBlocksGeneric(dst, src)
}
}

224
vendor/golang.org/x/crypto/chacha20/chacha_s390x.s generated vendored Normal file
View File

@ -0,0 +1,224 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !gccgo,!appengine
#include "go_asm.h"
#include "textflag.h"
// This is an implementation of the ChaCha20 encryption algorithm as
// specified in RFC 7539. It uses vector instructions to compute
// 4 keystream blocks in parallel (256 bytes) which are then XORed
// with the bytes in the input slice.
GLOBL ·constants<>(SB), RODATA|NOPTR, $32
// BSWAP: swap bytes in each 4-byte element
DATA ·constants<>+0x00(SB)/4, $0x03020100
DATA ·constants<>+0x04(SB)/4, $0x07060504
DATA ·constants<>+0x08(SB)/4, $0x0b0a0908
DATA ·constants<>+0x0c(SB)/4, $0x0f0e0d0c
// J0: [j0, j1, j2, j3]
DATA ·constants<>+0x10(SB)/4, $0x61707865
DATA ·constants<>+0x14(SB)/4, $0x3320646e
DATA ·constants<>+0x18(SB)/4, $0x79622d32
DATA ·constants<>+0x1c(SB)/4, $0x6b206574
#define BSWAP V5
#define J0 V6
#define KEY0 V7
#define KEY1 V8
#define NONCE V9
#define CTR V10
#define M0 V11
#define M1 V12
#define M2 V13
#define M3 V14
#define INC V15
#define X0 V16
#define X1 V17
#define X2 V18
#define X3 V19
#define X4 V20
#define X5 V21
#define X6 V22
#define X7 V23
#define X8 V24
#define X9 V25
#define X10 V26
#define X11 V27
#define X12 V28
#define X13 V29
#define X14 V30
#define X15 V31
#define NUM_ROUNDS 20
#define ROUND4(a0, a1, a2, a3, b0, b1, b2, b3, c0, c1, c2, c3, d0, d1, d2, d3) \
VAF a1, a0, a0 \
VAF b1, b0, b0 \
VAF c1, c0, c0 \
VAF d1, d0, d0 \
VX a0, a2, a2 \
VX b0, b2, b2 \
VX c0, c2, c2 \
VX d0, d2, d2 \
VERLLF $16, a2, a2 \
VERLLF $16, b2, b2 \
VERLLF $16, c2, c2 \
VERLLF $16, d2, d2 \
VAF a2, a3, a3 \
VAF b2, b3, b3 \
VAF c2, c3, c3 \
VAF d2, d3, d3 \
VX a3, a1, a1 \
VX b3, b1, b1 \
VX c3, c1, c1 \
VX d3, d1, d1 \
VERLLF $12, a1, a1 \
VERLLF $12, b1, b1 \
VERLLF $12, c1, c1 \
VERLLF $12, d1, d1 \
VAF a1, a0, a0 \
VAF b1, b0, b0 \
VAF c1, c0, c0 \
VAF d1, d0, d0 \
VX a0, a2, a2 \
VX b0, b2, b2 \
VX c0, c2, c2 \
VX d0, d2, d2 \
VERLLF $8, a2, a2 \
VERLLF $8, b2, b2 \
VERLLF $8, c2, c2 \
VERLLF $8, d2, d2 \
VAF a2, a3, a3 \
VAF b2, b3, b3 \
VAF c2, c3, c3 \
VAF d2, d3, d3 \
VX a3, a1, a1 \
VX b3, b1, b1 \
VX c3, c1, c1 \
VX d3, d1, d1 \
VERLLF $7, a1, a1 \
VERLLF $7, b1, b1 \
VERLLF $7, c1, c1 \
VERLLF $7, d1, d1
#define PERMUTE(mask, v0, v1, v2, v3) \
VPERM v0, v0, mask, v0 \
VPERM v1, v1, mask, v1 \
VPERM v2, v2, mask, v2 \
VPERM v3, v3, mask, v3
#define ADDV(x, v0, v1, v2, v3) \
VAF x, v0, v0 \
VAF x, v1, v1 \
VAF x, v2, v2 \
VAF x, v3, v3
#define XORV(off, dst, src, v0, v1, v2, v3) \
VLM off(src), M0, M3 \
PERMUTE(BSWAP, v0, v1, v2, v3) \
VX v0, M0, M0 \
VX v1, M1, M1 \
VX v2, M2, M2 \
VX v3, M3, M3 \
VSTM M0, M3, off(dst)
#define SHUFFLE(a, b, c, d, t, u, v, w) \
VMRHF a, c, t \ // t = {a[0], c[0], a[1], c[1]}
VMRHF b, d, u \ // u = {b[0], d[0], b[1], d[1]}
VMRLF a, c, v \ // v = {a[2], c[2], a[3], c[3]}
VMRLF b, d, w \ // w = {b[2], d[2], b[3], d[3]}
VMRHF t, u, a \ // a = {a[0], b[0], c[0], d[0]}
VMRLF t, u, b \ // b = {a[1], b[1], c[1], d[1]}
VMRHF v, w, c \ // c = {a[2], b[2], c[2], d[2]}
VMRLF v, w, d // d = {a[3], b[3], c[3], d[3]}
// func xorKeyStreamVX(dst, src []byte, key *[8]uint32, nonce *[3]uint32, counter *uint32)
TEXT ·xorKeyStreamVX(SB), NOSPLIT, $0
MOVD $·constants<>(SB), R1
MOVD dst+0(FP), R2 // R2=&dst[0]
LMG src+24(FP), R3, R4 // R3=&src[0] R4=len(src)
MOVD key+48(FP), R5 // R5=key
MOVD nonce+56(FP), R6 // R6=nonce
MOVD counter+64(FP), R7 // R7=counter
// load BSWAP and J0
VLM (R1), BSWAP, J0
// setup
MOVD $95, R0
VLM (R5), KEY0, KEY1
VLL R0, (R6), NONCE
VZERO M0
VLEIB $7, $32, M0
VSRLB M0, NONCE, NONCE
// initialize counter values
VLREPF (R7), CTR
VZERO INC
VLEIF $1, $1, INC
VLEIF $2, $2, INC
VLEIF $3, $3, INC
VAF INC, CTR, CTR
VREPIF $4, INC
chacha:
VREPF $0, J0, X0
VREPF $1, J0, X1
VREPF $2, J0, X2
VREPF $3, J0, X3
VREPF $0, KEY0, X4
VREPF $1, KEY0, X5
VREPF $2, KEY0, X6
VREPF $3, KEY0, X7
VREPF $0, KEY1, X8
VREPF $1, KEY1, X9
VREPF $2, KEY1, X10
VREPF $3, KEY1, X11
VLR CTR, X12
VREPF $1, NONCE, X13
VREPF $2, NONCE, X14
VREPF $3, NONCE, X15
MOVD $(NUM_ROUNDS/2), R1
loop:
ROUND4(X0, X4, X12, X8, X1, X5, X13, X9, X2, X6, X14, X10, X3, X7, X15, X11)
ROUND4(X0, X5, X15, X10, X1, X6, X12, X11, X2, X7, X13, X8, X3, X4, X14, X9)
ADD $-1, R1
BNE loop
// decrement length
ADD $-256, R4
// rearrange vectors
SHUFFLE(X0, X1, X2, X3, M0, M1, M2, M3)
ADDV(J0, X0, X1, X2, X3)
SHUFFLE(X4, X5, X6, X7, M0, M1, M2, M3)
ADDV(KEY0, X4, X5, X6, X7)
SHUFFLE(X8, X9, X10, X11, M0, M1, M2, M3)
ADDV(KEY1, X8, X9, X10, X11)
VAF CTR, X12, X12
SHUFFLE(X12, X13, X14, X15, M0, M1, M2, M3)
ADDV(NONCE, X12, X13, X14, X15)
// increment counters
VAF INC, CTR, CTR
// xor keystream with plaintext
XORV(0*64, R2, R3, X0, X4, X8, X12)
XORV(1*64, R2, R3, X1, X5, X9, X13)
XORV(2*64, R2, R3, X2, X6, X10, X14)
XORV(3*64, R2, R3, X3, X7, X11, X15)
// increment pointers
MOVD $256(R2), R2
MOVD $256(R3), R3
CMPBNE R4, $0, chacha
VSTEF $0, CTR, (R7)
RET

41
vendor/golang.org/x/crypto/chacha20/xor.go generated vendored Normal file
View File

@ -0,0 +1,41 @@
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found src the LICENSE file.
package chacha20
import "runtime"
// Platforms that have fast unaligned 32-bit little endian accesses.
const unaligned = runtime.GOARCH == "386" ||
runtime.GOARCH == "amd64" ||
runtime.GOARCH == "arm64" ||
runtime.GOARCH == "ppc64le" ||
runtime.GOARCH == "s390x"
// xor reads a little endian uint32 from src, XORs it with u and
// places the result in little endian byte order in dst.
func xor(dst, src []byte, u uint32) {
_, _ = src[3], dst[3] // eliminate bounds checks
if unaligned {
// The compiler should optimize this code into
// 32-bit unaligned little endian loads and stores.
// TODO: delete once the compiler does a reliably
// good job with the generic code below.
// See issue #25111 for more details.
v := uint32(src[0])
v |= uint32(src[1]) << 8
v |= uint32(src[2]) << 16
v |= uint32(src[3]) << 24
v ^= u
dst[0] = byte(v)
dst[1] = byte(v >> 8)
dst[2] = byte(v >> 16)
dst[3] = byte(v >> 24)
} else {
dst[0] = src[0] ^ byte(u)
dst[1] = src[1] ^ byte(u>>8)
dst[2] = src[2] ^ byte(u>>16)
dst[3] = src[3] ^ byte(u>>24)
}
}

39
vendor/golang.org/x/crypto/poly1305/bits_compat.go generated vendored Normal file
View File

@ -0,0 +1,39 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !go1.13
package poly1305
// Generic fallbacks for the math/bits intrinsics, copied from
// src/math/bits/bits.go. They were added in Go 1.12, but Add64 and Sum64 had
// variable time fallbacks until Go 1.13.
func bitsAdd64(x, y, carry uint64) (sum, carryOut uint64) {
sum = x + y + carry
carryOut = ((x & y) | ((x | y) &^ sum)) >> 63
return
}
func bitsSub64(x, y, borrow uint64) (diff, borrowOut uint64) {
diff = x - y - borrow
borrowOut = ((^x & y) | (^(x ^ y) & diff)) >> 63
return
}
func bitsMul64(x, y uint64) (hi, lo uint64) {
const mask32 = 1<<32 - 1
x0 := x & mask32
x1 := x >> 32
y0 := y & mask32
y1 := y >> 32
w0 := x0 * y0
t := x1*y0 + w0>>32
w1 := t & mask32
w2 := t >> 32
w1 += x0 * y1
hi = x1*y1 + w2 + w1>>32
lo = x * y
return
}

21
vendor/golang.org/x/crypto/poly1305/bits_go1.13.go generated vendored Normal file
View File

@ -0,0 +1,21 @@
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.13
package poly1305
import "math/bits"
func bitsAdd64(x, y, carry uint64) (sum, carryOut uint64) {
return bits.Add64(x, y, carry)
}
func bitsSub64(x, y, borrow uint64) (diff, borrowOut uint64) {
return bits.Sub64(x, y, borrow)
}
func bitsMul64(x, y uint64) (hi, lo uint64) {
return bits.Mul64(x, y)
}